生体医用システム工学科カリキュラム、入試情報紹介

工学部生体医用システム工学科のカリキュラムを紹介します。

本学科は、物理系?電子情報系といった工学系の科目と、生物?医療系科目を同時に学ぶことができる、ユニークな学科です。医療機器や医用システムを開発するために必要な知識を習得できます。臨床で活躍する医師や、医療に携わる技術者を招へいし、最先端の医療の動向を解説する「臨床医学概論」「臨床医学基礎」といった科目を設定しています。医療応用を見据えた講義?演習?実験を経て、各研究室に配属されて卒業研究へつながっていきます。

※各講義科目の概要は、本ページの後半部分をご覧下さい。

 

カリキュラム?ポリシー

基礎科目では、数学、力学、化学等の工学基礎に加えて、生物学基礎について学びます。低学年次(1、2年次)では、医療機器や計測?診断技術の原理としくみにかかわる専門基礎科目として応用数学、電磁気学、プログラミング、臨床医学概論等について学びます。

2、3年次には、医療応用にかかわる医用フォトニクス、医用超音波工学、医用デバイス工学、医用メカトロニクス等について学びます。

さらに、1年次の工学基礎実験および2年次の生体医用工学実験では、複数の学問分野にまたがるテーマに取り組むことで、実験という実証方法を身に付けるだけでなく、柔軟な発想力と応用力を身に付けます。

3年次後半から、研究室に所属して卒業研究を行います。教員の緻密な指導のもとで様々な生体医用工学技術の研究開発に取り組みます。

カリキュラム

低学年次では、数学、物理学、生物学等に加え、医療機器や計測?診断技術のしくみにかかわる専門基礎科目について学びます。高学年次には、医療応用にかかわる医用フォトニクス、医用超音波工学、医用デバイス工学、医用メカトロニクス等について学びます。さらに、3年次後期の研究室体験配属、4年次の卒業論文を通して、企画設計力、研究開発力、論理的発信力を身に付けることができます。

※科目名をクリックすると講義概要がご覧いただけます。

   区分 
 専門基礎科目  専門科目
4年次 
生体医用システム工学特別演習Ⅰ?Ⅱ
生体医用システム工学特別実験Ⅰ?Ⅱ
卒業論文
3年次 

生体医用工学Ⅱ
生命倫理
生体医用システム工学実験Ⅱ

病理学?薬理学
化学物理
材料力学
光エレクトロニクス
量子技術概論
医用超音波工学
医用メカトロニクス
生体機能工学
流体力学
医用計測?機器
生体フォトニクス
医用デバイス工学

2年次  力学Ⅱ
熱統計力学
振動?波動
電子回路
生物学
電磁気学Ⅱおよび演習
生体医用工学Ⅰ
数理統計学
電気回路
プログラミングⅡおよび演習

生体医用システム工学実験Ⅰ

計測?制御
医用画像工学
AI入門
科学英語ゼミ
抗体免疫学
臨床医学基礎Ⅰ?Ⅱ
生化学
特別ゼミⅡ

1年次  線形代数学Ⅰ?Ⅱ
微分積分学Ⅰ?Ⅱ
電磁気学Ⅰおよび演習
力学Ⅰ
工学基礎数学
工学応用数学
プログラミングⅠおよび演習
生理学
化学基礎
臨床医学概論
生物学入門

特別ゼミⅠ 

 

 

講義科目の概要

専門基礎科目

工学部共通

線形代数学Ⅰ (1年前期) 本講義では、行列に関する性質を学び、高等学校で習得した数学の内容を抽象的な理論と関連づけて理解することを目的とする。いくつかの数をひとまとめにして考えるとき、行列を用いると効果的に計算を行うことができる。工学の諸分野におけるさまざまな現象を記述し解析する上で、線形代数学で学習する内容は必須のものとなっている。行列に関する種々の計算技術を習得することは、より抽象的なベクトル空間などの諸概念を理解する助けになるので、本講義では演習を通してその習得を実践する。本講義の到達基準は、行列に関する諸性質を学び、具体的な計算技術を身につけることである。(↑カリキュラム表に戻る)

線形代数学Ⅱ (1年後期) 本講義では、平面や空間を一般化したベクトル空間、ベクトル空間の間の線形写像を定義し、線形写像を調べる方法を学ぶ。この方法を学ぶ上で、線形代数学Iで学んだ行列が重要な役割を果たす。線形写像は直線を直線に写す扱いやすい写像であるが、さまざまな場面に現れ利用されている。本講義では特に、ベクトル空間の基底や次元、線形写像の像、核などの基本的な事柄を学び、さらに、固有値および固有ベクトルについての理解を深める。本講義の到達基準は、ベクトル空間、線形写像、固有値、固有ベクトル、内積、行列の対角化などを理解し、具体的な計算ができるようになることである。(↑カリキュラム表に戻る)

微分積分学Ⅰおよび演習 (1年前期) 1変数関数の微分積分とその応用について学ぶ。極限の考え方を理解し、高度な計算力を身につけることが目標である。まず実数の基本的な性質である連続性について説明し、極限の考え方から出発して微分を定義し、その計算法を習得する。その過程で三角関数、逆三角関数、指数関数、対数関数などの関数の性質も学ぶ。積分については、微分と積分はたがいに逆演算であるという微分積分学の基本定理を説明し、不定積分、定積分の計算法を学び、その応用として図形の面積や曲線の長さなどの意味と計算法を習得する。基本的には初めの時間に講義を行い、次の時間で演習を行う。具体的な到達基準は以下の通りである。 (1)基本的な関数の微分積分が出来るようになること。 (2)関数の最大値?最小値の計算を理解すること。 (3)面積や曲線の長さの計算法を習得すること。 (↑カリキュラム表に戻る)

微分積分学Ⅱおよび演習 (1年後期) 本講義では、多変数関数の微分積分について学ぶ。多くの自然現象は多変数関数を用いて記述されるため、本講義の内容は工学において必須のものである。講義では2変数関数を主に扱う。まず2変数以上の関数について偏微分を学び、応用として関数の極値の判定法について学ぶ。次に2重積分や3重積分を学び、応用として図形の体積を計算する。平面上の線積分についても定義し、後に無限級数について学習する。多変数関数の微分積分に関する諸概念を理解し習得するとともに、演習をとおして確実な計算力を身につけることが、本講義の到達基準である。 基本的には初めの時間に講義を行い、次の時間に演習を行う。(↑カリキュラム表に戻る)

生体医用システム工学基礎

臨床医学概論(1年前期) 医療技術の開発に資する技術者の育成のためには、様々な診療科(内科、外科(循環器外科、消化器外科)、脳神経外科、産婦人科、皮膚科など)の特色、医療現場の実際、および必要とされる医療技術を理解していることが求められる。本科目では、複数の医療関係者を外部から招へいし、各診療科、各医療分野の概要について理解することを目標とする。到達基準は、各診療科の特徴、従来の医療技術?医療機器、各診療科における問題点とニーズについて理解できることとする。講義はオムニバス形式で全15回の座学とする。(↑カリキュラム表に戻る)

生理学(1年後期) 医療技術の開発に資する技術者の育成のためには、診断?治療の対象となる生体の機能を理解していることが求められる。2年次で生体医用工学Ⅰを習得するためには、低学年において生理学の基礎を押さえておくことが必要である。本科目では、生命現象の機能的構成および生体の恒常性を維持する機構について学習し、生物の諸器官に関する機能と病態との関係について理解できることを目標とする。到達基準は、生命機能を物理的および化学的性質から理解するための様々な法則を理解していること、生命機能を評価するための工学的測定方法を理解し、病態との関係について説明できることとする。講義は全15回の座学とし、序盤(1~5回)で血液循環および物質の摂取?排出について、中盤(6回~10回)で内部環境の恒常性、終盤(11回~15回)では演習課題も含め、神経および生体機能の調整を理解させる。(↑カリキュラム表に戻る)

生物学(2年後期) 物理学、電気電子、機械といった工学とは異なるカテゴリーの学問である生物学も、現代の工学技術者、特に医療関係の研究者にとって必須の常識であり、更に工学の視点との接点や共通点が多々存在する。本講義では、「生物学入門」を受講したことを前提に、生物学の基礎から最先端の生物学の話題に至るまでを概観する。生物学が身近で極めて重要な科学である、ということを実感できるようになることを到達目標とする。講義は全15回の座学とし、前半(1?7回)で主に遺伝学の深淵について、後半(8回?15回)で呼吸に代表される細胞の代謝から、細胞間の相互作用であるマクロな生体分子反応に発展させる。(↑カリキュラム表に戻る)

生体医用工学Ⅰ(2年後期) 医療技術の開発に資する技術者の育成のためには、様々な診療科(内科、外科(循環器外科、消化器外科)、脳神経外科、産婦人科、皮膚科など)で使われている医療器具?装置の原理、現状の医療界のトレンドなどを網羅的に把握していることが求められる。本科目では、現在の医療現場で広く普及している診断?治療技術や最先端の医療機器について理解することを目標とする。到達基準は、既存または開発段階にある医療技術?医療機器の原理と特徴、開発の背景、制限や問題点について理解できることとする。講義は全15回の座学とし、講義1回あたり1つの医療技術?医療機器に関する講義を行う。(↑カリキュラム表に戻る)

数理統計学 (2年前期) 医療に関する調査や実験で得られたデータを扱うためには、数理統計学は非常に重要な学問である。特に生体医用工学を扱う技術者としては、データが示す傾向から、それが生じた背景や傾向を読み取ることが求められる。本講義は、データ解析の基本的な概念である確率分布、平均、分散、標準偏差の意味を修得して実践できる実力を身につけ、さらに代表的な統計的推論の方法としての各種推定法および検定法の考え方について考察する。同時に、医療データに関する様々な実例を演習問題として解析し、これらへの理解を深め、実用出来るようになることを目標とする。講義は全15回の座学とし、序盤でデータ整理の基本的手法である確率変数ならびに確率分布について、中盤で各種推定法、検定法の詳細について解説し、終盤で演習を中心にした実際の解析方法について実践する。(↑カリキュラム表に戻る)

工学基礎数学(1年前期) 物理現象を理解し説明するにあたり、数学は極めて強力な道具となる。本講義では、物理を学ぶ上で不可欠となる微分方程式、ベクトル解析の基礎的事項について学ぶ。数学が便利かつ強力かつ不可欠な道具であることを認識し、基本的な使い方を習得することを到達基準とする。講義は全15回の座学とし、前半で複素平面と線形上微分方程式の解法を、後半で多重積分とベクトル場について講義する。(↑カリキュラム表に戻る)

工学応用数学(1年後期) 本科目では、力学、電磁気学、振動?波動、などで登場する物理現象を題材として数学的な解析手段を横断的に眺め、微分積分学、線形代数学などの数学科目で学んだ知識との関係を理解させる。物理現象を記述する道具としての数学を修得し、その応用能力を高め、物理現象を記述する具体的な表現方法や計算手法を修得することを目標とする。講義は全15回の座学とし、前半でベクトル解析を、後半で複素関数論へ展開させる。(↑カリキュラム表に戻る)

化学基礎(1年前期) あらゆる工学は物質材料と深く関連し、また生命世界を支配するのも物質世界であるため、化学は物質世界についての膨大な知識をきちんと脈絡をもって体系的にとらえる上で大変に有効な分類学である。本講義では非化学系の学生にとっても近づきやすいよう、物理的視点を多く盛りこみながら、化学のトピックスを解説する。化学的な現象について覚えるのでなく、考えることができるようになることを目標とする。講義は全15回の座学とし、序盤(1?5回)で元素の起源や環境について、中盤(6回?10回)で酸化還元および分析の基礎、終盤(11回?15回)では化学反応や刺激伝達に発展させる。(↑カリキュラム表に戻る)

生物学入門(1年前期) 高校の生物の内容を確認した上で、本学科で開講されている生物学、生理学、生化学などの授業において生命現象を深く学んで行く上での基礎を身につけることを目的とする。分子から細胞、そして個体までのつながりと、その形成に必要な遺伝子の発現や発生?生殖、動物や植物の形と機能など、生物学を全般に渡って広く学ぶ。講義と演習から成る全15回とし、序盤(1?5回)で生物と細胞の基礎について、中盤(6回?10回)で遺伝および遺伝子の詳細について、終盤(11回?15回)では生物の進化過程における適応と恒常性維持、生態系などの具体的トピックスへと発展させる。(↑カリキュラム表に戻る)

力学Ⅰ(1年後期) 運動の三法則を軸とする物体の運動(古典力学)について学習する。具体的には、質点の一次元運動と周回運動、質点系の運動、剛体の並進?回転運動を扱う。「力学」は物理や工学において最も基本となるものであり、これを習得するとともに、物理的なものの考え方、アプローチの仕方を身に着けることも目的とする。到達基準は、微分方程式を用いて質点の運動を定式化することができること、角運動量の概念を理解し、質点の周回運動を定式化することができることとする。講義は演習を交えながら進める。(↑カリキュラム表に戻る)

力学Ⅱ(2年後期) 準備中。(↑カリキュラム表に戻る)

電磁気学Ⅰおよび演習(1年後期) 電磁気学は、理工系の技術や研究の基盤の1つである。本講義は、生体医用システム工学の専門分野に必要な電磁気学の基礎に関する知識を与えることを目的としている。単に式を覚え、与えられた演習問題を解く能力を養うのではなく、電磁気的な力?相互作用の現象の本質を理解し、実際の生体工学における具体的応用の場面で自らモデル化して考える能力を養成することを目指す。到達基準は、生体工学を考える上で必須となる電磁気の物理量の定義や意味を理解すること、ベクトル微積分を用いた電場の勾配、発散や回転の概念およびマクスウェル方程式の物理的意味を説明できること、適切な式や図、グラフを用いて静電場の現象を説明できることとする。(↑カリキュラム表に戻る)

電磁気学Ⅱおよび演習(2年前期) 準備中。(↑カリキュラム表に戻る)

熱統計力学(2年前期) 医療にかかわる計測?診断技術を開発するにあたり、生体の機能や仕組みを物理的観点から理解し、デバイス開発等の応用に繋げるためには、熱力学及び統計力学の考え方を身につける必要がある。本科目では、熱統計力学の基本的な考え方について学び、この考え方を生体機能や身の周りの現象の理解に活用できることを目標とする。到達基準は、熱力学の基本原理に立ち返り身の周りの現象を説明できること、統計力学の基本的な考え方に基づき原子?分子レベルの運動を説明できることとする。講義は小グループ単位の議論と発表を含めた全15回の座学とし、前半(1~7回)で熱力学の考え方と応用について、後半(8回~15回)で統計力学の考え方と応用について学ぶ。(↑カリキュラム表に戻る)

振動?波動(2年後期) 医療技術を開発する人材育成のためには、計測装置の原理や体内での物理現象を理解していることが求められる。本科目では、光や電波および音波に関する物理現象に対して、波動現象として総括的に理解できることを目標とする。到達基準は、波動現象の基礎を理解していること、光?電波および音波に関する計測技術との関連性を理解していることとする。講義は全15回の座学とし、前半(1?7回)で振動?波動現象の基礎、後半(8回?15回)では光?電波と音波に関する理論を解説する。(↑カリキュラム表に戻る)

プログラミングⅠおよび演習(1年前期) 現代の科学技術においてコンピュータの活用は欠かせない。特に、コンピュータを操るためのプログラミングは、研究者や技術者には不可欠な能力となっている。本科目では、計算機シミュレーションや実験装置の制御に広く用いられるC/C++言語について学ぶ。C/C++言語の文法を学び、基礎的なプログラムの作成技法について学ぶ。特に、コンピュータのハードウエアに密着したプログラミングができるC/C++言語の特徴を理解する。さらに、オブジェクト指向の考え方を理解し、最近のプログラミング環境にも対応できるようにする。達成基準は、自らの力で基礎的なプログラムを作る能力を習得できていることとする。講義と演習から成る全15回とし、コンピュータのハードウエア(1回)、データ型?演算子?式(2回)、制御の流れ(3?4回)、関数とプログラム構造(5?6回)、ポインタと配列(7?8回)、文字列の扱い(9回)、構造体(10回)、入出力(11?12回)、オブジェクト指向(13?14回)、画像の扱い(15回)について学ぶ。(↑カリキュラム表に戻る)

プログラミングⅡおよび演習(2年前期) 「プログラミングⅠおよび演習」で習得したC/C++プログラムの作成技法について発展させ、データ処理、画像処理を含めた複雑なプログラミングを抵抗なくこなせることを目指す。解析解を求めることが困難な数学的問題、数値シミュレーションといった基礎的な計算処理の基礎的な課題を積み上げる。またポインタ?構造体といったデータを扱うプログラミング技術についても学ぶ。講義と演習から成る全15回とし、序盤(1?5回)で画像処理を含めたグラフィックについて、中盤(6回?10回)でポインタや文字列の扱い、終盤(11回?15回)では演習課題も含め、各種シミュレーションへの応用へと発展させる。(↑カリキュラム表に戻る)

電気回路(2年前期) 生体医用計測、医用機器には必ず電気回路が関わっており、将来それらの開発に従事するには、電気回路の基礎を修得することが必須条件である。本科目では、抵抗、コンデンサ、コイルからなる直流回路、交流回路について学び、その応答を導出できることを目標とする。到達基準は、電気回路に関する法則を理解し、直流回路、交流回路の回路解析ができることとする。講義は全15回で、適宜演習を交えつつ行う。前半(1?7回)では、簡単な構成の回路について学び、複素数を用いた解析までを扱う。後半(8回?15回)では、前半の内容をもとに回路網解析の基本を学ぶ。(↑カリキュラム表に戻る)

電子回路(2年後期) 医療技術の開発に資する技術者の育成のためには、現代社会を支えるエレクトロニクスの基本知識が必要である。本科目では、半導体における電子物性の基礎を学んだ上で、ダイオードやトランジスタの原理を理解する。さらに、アナログ?ディジタル電子回路の基本を修得することを目的とする。講義は全15回の座学とし、前半(1~7回)で固体のバンド構造および半導体の基礎について、後半(8回~15回)で半導体素子の原理を理解しアナログ?ディジタル電子回路へ発展させる。(↑カリキュラム表に戻る)

 

専門科目

生体医用工学Ⅱ (3年前期) 医療技術の開発に資する技術者の育成のためには、様々な診療科(内科、外科(循環器外科、消化器外科)、脳神経外科、産婦人科、皮膚科など)で使われている医用画像診断装置の原理、現状の医療界のトレンドなどを網羅的に把握していることが求められる。本科目では、今後の医療現場で必要になると考えられる、現在開発中の医療技術について理解することを目標とする。また、異なる画像診断法を組み合わせたマルチモーダル技術や診断と治療を同時に行うセラノスティクス技術についても触れる。到達基準は、既存または開発段階にある医用画像診断技術?機器の原理と特徴、開発の背景、制限や問題点について理解できることとする。講義は全15回の座学とし、講義1回あたり1つの医療技術?医療機器に関する講義を行う。(↑カリキュラム表に戻る)

生命倫理(3年前期) 生命倫理が成立した背景には、科学技術、特に医療の進歩に伴う生命観、死生観の大きな変化にどう対応すればよいか、という切実な問題意識がある。本講義では特に医療技術者となる上で必要な、人間や動物に対する生命倫理が持っている意味を踏まえた上で、様々な問題について具体的に考えていく。生命倫理という学問分野の現代的意義を理解し、科学技術がもたらした影響力の大きさ、深刻さに対する健全な問題意識を養うことができることを到達基準とする。講義は全15回の座学とし、序盤(1?5回)で生命倫理が誕生したきっかけや生命倫理の特徴について、中盤(6回?10回)で生命の始まり、生命の選別、生きる権利といった具体的なトピックスを掲げ、終盤(11回?15回)では主に生命の終りについて問題提起し、生命観を養う。(↑カリキュラム表に戻る)

計測?制御(2年後期) 医療に関わる計測装置においては高い信頼性が求められるが、どんな装置を使っても、計測結果には必ず誤差が含まれる。本科目では様々な計測方法を学び、必要とされる計測精度が得られるように自ら測定方法を計画できるようになることを目標とする。また近年では電子化?自動化された計測装置が増えており、状態フィードバック制御など自動制御の基礎理論を理解することも目標とする。到達基準は、計測結果の確率的な取り扱いを理解して誤差の大きさを予測できること、状態フィードバック制御を理解していることとする。講義は全15回の座学とし、前半(1~7回)で計測工学を学び、後半(8回~15回)で制御理論を学習する。(↑カリキュラム表に戻る)

医用画像工学(2年後期) 近年、携帯電話に代表されるあらゆる電子機器にカメラが搭載され、デジタル画像は余りにも身近になっている。また生体医用システム工学分野において、画像診断の要素は不可欠である。本講義では、画像を扱うための基本知識として、ハードウェアとしての画像機器の扱い、ソフトウェアとしての画像処理プログラミングのアルゴリズムについて講義を行う。達成基準は、画像の基本知識はもとより、与えられた課題に対するアルゴリズム構築を行う能力を習得できていることとする。講義は全15回の座学とし、序盤(1?5回)で画像の基礎と入出力機器の概要について、中盤(6回?10回)でパターン認識に蛇表される画像処理の基礎、終盤(11回?15回)では演習課題も含め、医用画像を用いた応用を展開する。(↑カリキュラム表に戻る)

A I 入門(2年後期) 最近の人工知能(AI)の発達は目覚ましいものがあり、医療分野においても活用が進んでいる。本科目では、AIの基本的な考え方をディープニューラルネットワークに基づき学び、最新のAI技術について理解するための基礎を学ぶ。最初に、AIのプログラミングでよく使われるプログラミング言語であるPythonについて学び、その後、ディープラーニングで用いられる基本的なアルゴリズムについて学ぶ。また、最近のAIツールの使い方についても学ぶ。達成基準は、AIで用いられるディープラーニングの基本的な考え方が理解できていることとする。講義は全15回の座学とし、Pythonプログラミング(1回)、パーセプトロン(2回)、ニューラルネットワーク(3回)、ネットワークでの学習(5?6回)、ディープニューラルネットワーク(7回)、畳み込みニューラルネットワーク(8?9回)、リカレントニューラルネットワーク(10?11回)、オートエンコーダ(12?13回)、AIソフトウェア(14?15回)について学ぶ。(↑カリキュラム表に戻る)

化学物理(3年前期) 生体の化学反応や状態変化を理解するためには、熱統計力学を応用して状態を記述することが重要である。本科目では、熱統計力学から状態変化を理解し、また生体へ応用することを到達基準とする。講義は全15回の座学とし、前半(1~7回)で統計力学的なエントロピーの定義の再確認からスタートし状態の変化の向きについて学ぶ。また、後半(8回~15回)では自由エネルギーを導入して温度や圧力一定の条件下での状態変化の向きや平衡状態を理解できること、また化学平衡や相平衡などへ応用する。(↑カリキュラム表に戻る)

材料力学(3年前期) 準備中。(↑カリキュラム